Combined pharmacological activation of AMPK and PPAR δ potentiates the effects of exercise in trained mice
نویسندگان
چکیده
The combined activation of the cellular energy sensor AMP-activated protein kinase (AMPK) and the nuclear transcription factor peroxisome proliferator-activated receptor delta (PPARδ) has been demonstrated to improve endurance and muscle function by mimicking the effects of exercise training. However, their combined pharmacological activation with exercise training has not been explored. Balb/c mice were trained on a treadmill and administered both the AMPK activator AICAR and the PPARδ agonist GW0742 for 4 weeks. AICAR treatment potentiated endurance, but the combination of AICAR and GW0742 further potentiated endurance and increased all running parameters significantly relative to exercised and nonexercised groups (138-179% and 355% increase in running time, respectively). Despite the lack of change in basal whole-body metabolism, a significant shift to fat as the main energy source with a decline in carbohydrate utilization was observed upon indirect calorimetry analysis at the period near exhaustion. Increased energy substrates before exercise, and elevated muscle nonesterified fatty acids (NEFA) and elevated muscle glycogen at exhaustion were observed together with increased PDK4 mRNA expression. Citrate synthase activity was elevated in AICAR-treated groups, while PGC-1α protein level tended to be increased in GW0742-treated groups. At exhaustion, Pgc1a was robustly upregulated together with Pdk4, Cd36, and Lpl in the muscle. A robust upregulation of Pgc1a and a downregulation in Chrebp were observed in the liver. Our data show that combined pharmacological activation of AMPK and PPARδ potentiates endurance in trained mice by transcriptional changes in muscle and liver, increased available energy substrates, delayed hypoglycemia through glycogen sparing accompanied by increased NEFA availability, and improved substrate shift from carbohydrate to fat.
منابع مشابه
Combined pharmacological activation of AMPK and PPARd potentiates the effects of exercise in trained mice
The combined activation of the cellular energy sensor AMP-activated protein kinase (AMPK) and the nuclear transcription factor peroxisome proliferator-activated receptor delta (PPARd) has been demonstrated to improve endurance and muscle function by mimicking the effects of exercise training. However, their combined pharmacological activation with exercise training has not been explored. Balb/c...
متن کاملAngiotensin II receptor blocker telmisartan enhances running endurance of skeletal muscle through activation of the PPAR-δ/AMPK pathway
Clinical trials have shown that angiotensin II receptor blockers reduce the new onset of diabetes in hypertensives; however, the underlying mechanisms remain unknown. We investigated the effects of telmisartan on peroxisome proliferator activated receptor γ (PPAR-δ) and the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway in cultured myotubes, as well as on the running endu...
متن کاملEffect of two types of exercise combined with atorvastatin on AMPK and (Cytochrome c) expression of cardiac myositis in elderly rats
Effect of two types of exercise combined with atorvastatin on AMPK and SYTOCHOROM C expression of cardiac myositis in elderly rats with type 2 diabetes One of the most common physical problems in old age is chronic diabetes. this issue is more intense and sensitive. Therefore the aim of this study was to investigative the combined effect of two types of exercise with atorvastatin on the on the...
متن کاملPeroxisome Proliferator-activated Receptor (PPAR)-γ Modifies Aβ Neurotoxin-induced Electrophysiological Alterations in Rat Primary Cultured Hippocampal Neurons
Alzheimer’s disease (AD) is undoubtedly one of the serious and growing public health challenges in the world today. There is an unmet need for new and effective preventative and therapeutic treatment approaches for AD, particularly at early stages of the disease. However, the underlying mechanism against Aβ-induced electrophysiological alteration in cultured hippocampal pyramidal neurons is st...
متن کاملPeroxisome Proliferator-activated Receptor (PPAR)-γ Modifies Aβ Neurotoxin-induced Electrophysiological Alterations in Rat Primary Cultured Hippocampal Neurons
Alzheimer’s disease (AD) is undoubtedly one of the serious and growing public health challenges in the world today. There is an unmet need for new and effective preventative and therapeutic treatment approaches for AD, particularly at early stages of the disease. However, the underlying mechanism against Aβ-induced electrophysiological alteration in cultured hippocampal pyramidal neurons is st...
متن کامل